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An analysis of the normal modes of vibration of a cubic perovskite that have

condensed to produce phases with tilted octahedra is presented. Only structures

with octahedral tilts that double a repeat distance are considered; these involve

small rotations of the octahedra about pseudocubic h100i directions. Phases with

more than one octahedral tilt often possess atomic displacements in addition to

those associated directly with the tilts. A Landau potential has been constructed

which includes all parameters needed to describe the low-symmetry phases. In

addition to the spontaneous macrostrain, seven different order parameters are

required to describe the possible transitions between phases with only one type

of A and one type of B cation. Arguments based on the Landau expansion

suggest that structural displacements associated with some of these order

parameters are unlikely to be present, and that some subsets of displacements

may have a higher symmetry than required by the space group of the lower-

symmetry phase. Comparison is made between these predictions and reported

structural re®nements. Where relevant, phases with more than one type of A or

more than one type of B cation are considered.

1. Introduction

The high-temperature cubic phase ± the aristotype (Megaw,

1973) ± is taken to have the following fractional atomic

coordinates:

A � 1
2

1
2

1
2 �

B �000�
OI �00 1

2 �
OII �0 1

2 0�
OIII � 1

2 00�:

The numbering of the anions (not necessarily O atoms)

follows the convention adopted by Cowley (1964). After a

displacive phase transition, the topology of the structure is

unchanged but some of the atoms are displaced from the

positions of high symmetry that they occupy in the aristotype.

These phases with lower symmetry will be called hettotypes

(Megaw, 1973). Cochran & Zia (1968) point out that the

displacements can be analysed in terms of normal modes of

the aristotype. We use Cowley's labelling convention so that

the condensed modes can be readily identi®ed with the irre-

ducible representations and wavevectors of the normal modes

of the aristotype listed in the Appendix of Cowley's paper.

(Cowley describes the structure with A at the origin, but this

difference is irrelevant.)

The hettotypes considered here involve tilting of the octa-

hedra caused by condensation of modes with wavevectors at

the R- and M-points of the cubic Brillouin zone. These points,

[2�� 1
2

1
2

1
2 �=a] and [2��0 1

2
1
2 �=a], respectively, referred to by �

hereafter with q = [2��=a], lie on the zone boundary. Possible

structures with octahedra tilted by these modes were consid-

ered by Glazer (1972), who concluded, from geometrical

arguments, that there are 23 such tilt systems (including the

aristotype which has no tilts). Only structures with a single

type of A cation and single type of B cation were analysed. In

Glazer's notation, an octahedral tilt with � = �0 1
2

1
2 � is

described by a plus sign, and � = � 1
2

1
2

1
2 � by a minus sign.

Equality between different pseudocubic components of the tilt

is indicated by using the same letter of the alphabet. Thus, for

example, [a+a+a+] describes a hettotype with three tilts of

equal angle, with � = �0 1
2

1
2 �, ( 1

2 0 1
2 ) and ( 1

2
1
2 0); [aÿaÿc+]

describes a structure with two equal tilts with � = ( 1
2

1
2

1
2 ) but

the third tilt, with � = ( 1
2

1
2 0), has a different magnitude of tilt

angle. Using Cowley's table, a plus tilt about [001]pc, for

example, corresponds to the normal mode of the aristotype

described as

�� 1
2

1
2 0�;M3� with OII�x� � ÿOIII�y�;

while a minus tilt about [100]pc corresponds to

�� 1
2

1
2

1
2 �;ÿ25� with OI�y� � ÿOII�z�:

The mode in the cubic phase at the M-point is a singlet; at the

R-point it is a triplet.

Glazer included in his list systems such as [aÿaÿa+]. Since

the plus and minus tilts correspond to normal modes of the

cubic phase that are not related by symmetry, equality in their

magnitude can only occur by accident and so such structures



will not be considered. Therefore, only nine

possible tilt systems remain ± ten including the

arisotype.

The nine hettotypes with single types of A

and B cations are listed in Table 1. In the table,

each phase is identi®ed using the notation

developed by Glazer (1972) and in the third

column by one that is useful in constructing a

Landau expansion. In the latter description, the

pseudocubic component of a plus tilt is

described by Mi (i = 1, 2, 3), and a minus tilt by

Ri (i = 1, 2, 3).

The multiplicities of the pseudocubic unit

cell, mi, are de®ned as

apc � m1ac; bpc � m2ac; cpc � m3ac;

where ac is the value of the cubic lattice par-

ameter extrapolated to the relevant tempera-

ture. For the hettotypes considered, mi equals

either 1 or 2. These are given in Table 1 along

with the size of the conventional cell.

The space groups for phases with indis-

tinguishable B cations are given in column 6.

The space group is in the orientation displayed

in International Tables for Crystallography

(1992). The symbols in the second and third

columns of Table 1 give non-zero values for the

tilt components that correspond to this orien-

tation.

Glazer's original allocation of Pmmn for

hettotype 8, [a+a+cÿ], is now not generally

accepted ± there is no reason for equality of the

two plus tilts using this space group. Following

Leinenweber & Parise (1995), space group

P42=nmc is used. In this group, there are three

crystallographically distinguishable A cations

[see Woodward (1997a) for a discussion

concerning allocation of space groups].

2. Primary and secondary order
parameters

Displacements caused by the condensation of a

normal mode of the cubic phase form the bases

of the primary order parameters. These will be assumed to be

the plus and minus tilts at the M- and R-points of the Brillouin

zone in all the materials considered here. The space group that

describes a hettotype often allows atomic displacements in

addition to those associated directly with the octahedral tilts.

Both anions and A cations can be involved. The additional

displacements form the bases of so-called secondary order

parameters. The spontaneous macrostrains that describe the

change in shape and size of the pseudocubic unit cell of the

hettotypes considered here are also secondary order param-

eters. Generally, these modes are not soft. Landau theory

applied to these phase transitions shows that non-zero values

of secondary order parameters arise through terms coupling

them to a primary order parameter. This is dealt with in x5.

The primary and secondary order parameters, excluding the

macrostrains, found in the nine hettotypes with only one type

of A and B cations, are given in Table 2. In addition, they are

identi®ed by a symbol that is used in the construction of the

Landau expansion. All are transverse modes of vibration in

the aristotype. The notation is self-explanatory except perhaps

that for parameter X where the middle suf®x is used to indi-

cate the wavevector of the condensed mode, while the third

suf®x gives the direction of displacement of the atoms in that

mode.
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Table 1
The nine hettotypes.

Number �=ÿ notation [Mi Rj] Multiplicity True unit cell Space group

1 a0a0cÿ R3 2 � 2 � 2 21/2 � 21/2 � 2 I4=mcm (140)
2 aÿb0aÿ R1 = R3 2 � 2 � 2 21/2 � 2 � 21/2 Imma (74)
3 aÿaÿaÿ R1 = R2 = R3 2 � 2 � 2 21/2 � 21/2 � 21/2 R�3c (167)
4 a0a0c+ M3 2 � 2 � 1 21/2 � 21/2 � 1 P4=mbm (127)
5 a+a+c0 M1 = M2 2 � 2 � 2 2 � 2 � 2 I4=mmm (139)
6 a+a+a+ M1 = M2 = M3 2 � 2 � 2 2 � 2 � 2 Im (204)
7 a0bÿc+ R2, M3 2 � 2 � 2 2 � 2 � 2 Cmcm (63)
8 a+a+cÿ M1 = M2, R3 2 � 2 � 2 2 � 2 � 2 P42=nmc (137)
9 aÿb+aÿ R1 = R3, M2 2 � 2 � 2 2 � 2 � 2 Pnma (62)

Table 2
Atomic displacements in the seven normal modes, the symbol used in the construction of
the Landau potential, and character of each mode.

Normal mode Displacement Symbol Character

( 1
2,

1
2,

1
2 ), ÿ25 OI(y) = ÿOII(z) R1 Octahedral minus tilt

( 1
2,

1
2,

1
2 ), ÿ25 OI(x) = ÿOIII(z) R2 Octahedral minus tilt

( 1
2,

1
2,

1
2 ), ÿ25 OII(x) = ÿOIII(y) R3 Octahedral minus tilt

( 1
2,

1
2,

1
2 ), ÿ15 OI(y) = OII(z) GO1 Octahedral minus distortion

( 1
2,

1
2,

1
2 ), ÿ15 OI(x) = OIII(z) GO2 Octahedral minus distortion

( 1
2,

1
2,

1
2 ), ÿ15 OII(x) = OIII(y) GO3 Octahedral minus distortion

( 1
2,

1
2,

1
2 ), ÿ15 A(x) GA1 A cation displacement

( 1
2,

1
2,

1
2 ), ÿ15 A(y) GA2 A cation displacement

( 1
2,

1
2,

1
2 ), ÿ15 A(z) GA3 A cation displacement

(0, 1
2,

1
2 ), M3 OI(y) = ÿOII(z) M1 Octahedral plus tilt

( 1
2, 0, 1

2 ), M3 OI(x) = ÿOIII(z) M2 Octahedral plus tilt

( 1
2,

1
2, 0), M3 OII(x) = ÿOIII(y) M3 Octahedral plus tilt

(0, 1
2,

1
2 ), M1 OI(y) = OII(z) H1 Octahedral plus distortion

( 1
2, 0, 1

2 ), M1 OI(x) = OIII(z) H2 Octahedral plus distortion

( 1
2,

1
2, 0), M1 OII(x) = OIII(y) H3 Octahedral plus distortion

( 1
2, 0, 0), M5

0 OIII(y) XO12 Octahedral distortion

( 1
2, 0, 0), M5

0 OIII(z) XO13 Octahedral distortion

(0, 1
2, 0), M5

0 OII(z) XO23 Octahedral distortion

(0, 1
2, 0), M5

0 OII(x) XO21 Octahedral distortion

(0, 0, 1
2 ), M5

0 OI(x) XO31 Octahedral distortion

(0, 0, 1
2 ), M5

0 OI(y) XO32 Octahedral distortion

( 1
2, 0, 0), M5

0 A(y) XA12 Cation displacement

( 1
2, 0, 0), M5

0 A(z) XA13 Cation displacement

(0, 1
2, 0), M5

0 A(z) XA23 Cation displacement

(0, 1
2, 0), M5

0 A(x) XA21 Cation displacement

(0, 0, 1
2 ), M5

0 A(x) XA31 Cation displacement

(0, 0, 1
2 ), M5

0 A(y) XA32 Cation displacement
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3. Hettotypes with distinguishable A and B cations

Glazer considered phases with a single type of A cation and a

single type of B cation. However, there is clear evidence that

in BaBiO3 there is ordering of the valency on the bismuth ions,

and the material would be better described as Ba2BiIIIBiVO6

(Cox & Sleight, 1979). In such phases, the symmetry per

formula unit is less than in the corresponding phase with

identical B cations, and the relevant space group is a subgroup

of the space group that describes the hettotype with identical

B cations.

A number of perovskites possess distinguishable A cations.

An example is CaFeTi2O6 with tilt system [a+a+cÿ], which

crystallizes in space group P42=nmc (Leinenweber & Parise,

1995). The space group provides three distinct sites for the A

cations; Fe ions occupy two of them, neither of which allow

any displacement, while Ca goes into a site which permits a

displacement in the direction of the fourfold axis. No

perovskite with identical A cations has been found to possess

this tilt system (Woodward, 1997b).

4. Strength of the condensed modes

In Table 3, the condensed modes that may be present in each

hettotype are listed. These have been determined by exam-

ination of the displacements allowed by the symmetry of the

space group.

Following Cochran & Zia (1968), the strength, W, of each

condensed mode can be evaluated in terms of the fractional

coordinates of the displaced atoms and the relevant lattice

parameter. The expression for W is

W � v=v0� �P
�k

mku
2 �k; qR� �; �1�

where mk is the mass of atom k, u(�k, qR) is the displacement

of atom k in subcell � by mode [qR] acting on its own, v0 is the

volume of the unit cell of the hettotype, and v is the volume

the aristotype would have at the temperature under consid-

eration. Values of W for a number of materials are given in

Table 4.

[A listing of the atomic displacements from positions of

high symmetry in each hettotype, and an expression for the

weight of a condensed mode in terms of these displacements

and lattice parameters in each phase can be obtained from the

author.]

5. Proposed Landau potential and the number of
condensed modes in each hettotype

A Landau expansion involving the seven separate order

parameters and macroscopic strain that can reproduce the

hettotypes is discussed here. An expression for the excess free

energy, F, only to fourth order in the order parameters and

including only the lowest-order coupling terms, is of the form

F� 1
2 arR

2
i � 1

2 brR
2
i R

2
j � 1

4 crR
4
i � 1

2 amM
2
i � 1

2 bmM
2
i M

2
j � 1

4 cmM
4
i

� 1
2 frmR

2
i M

2
i � 1

2 grmR
2
i M

2
j � 1

2 agG
2
i � 1

2 bgG
2
i G

2
j � 1

4 cgG
4
i

� 1
2 fgrG

2
i R

2
i � 1

2 ggrG
2
i R

2
j � 1

2 ahH
2
i � 1

2 bhH
2
i H

2
j � 1

4 chH
4
i

� 1
2 fhmH

2
i M

2
i � 1

2 ghmH
2
i M

2
j � 1

2 axX
2
ij � 1

2 b
0
xX

2
ijX

2
kj

� 1
2 b

00
xX

2
ijX

2
ik � 1

4 cxX
4
ij � 1

2 fxrmX
2
ijR

2
j M

2
i � 1

2 c11"
2
ii � c12"ii"jj

� 1
2 c44"

2
ij � 1

2 f"r"iiR
2
i � 1

2 g"r"iiR
2
j � h"r"ijRiRj � 1

2 f"m"iiM
2
i

� 1
2 g"m"iiM

2
j : �2�

Gi and Xij represent two normal modes each, GAi, GOi, XAij

and XOij. The former pair involve displacement of the A cation

and one of the anions with � = ( 1
2

1
2

1
2 ). Terms involving

coupling between the macrostrain, "ij , and Gi, Hi and Xij are

likely to be unimportant compared with the coupling between

the macrostrain and the plus and minus tilts and hence have

been omitted in order to shorten the expression. The coupling

between octahedral tilts and macrostrain has been studied in

some detail recently (Darlington, 1996; Darlington & Knight,

1999). For a full discussion of coupling between order par-

ameters and macrostrain, see Salje (1990).

Possible phases in which both plus and minus tilts about the

same h100i pseudocubic directions are present have been

omitted from the discussion. There is only one report of such a

structure, that of KMnF3 below 90 K (Hidaka, 1975). Such

phases will never become the most stable state if the coef®-

cient frm is suf®ciently large and positive.

Apart from ar and am, the coef®cients can be taken to be

sensibly independent of temperature; the only soft modes

involve octahedral tilting. In fact, in a number of perovskites

Table 3
The space group, possible condensed modes and non-zero pseudocubic
spontaneous macrostrain in the nine hettotypes.

Number Space group Allowed modes Macrostrain

1 I4=mcm (140) R3 "11 � "22; "33

2 Imma (74) R1 � R3 "11 � "33; "22; "31

GO1 � GO3

GA1 � GA3

3 R�3c (167) R1 � R2 � R3 "11 � "22 � "33; "23 � "31 � "12

4 P4=mbm (127) M3 "11 � "22; "33

5 I4=mmm (139) M1 � M2 "11 � "22; "33

H1 � H2 6� H3

6 Im�3 (204) M1 � M2 � M3 "11 � "22 � "33

H1 � H2 � H3

7 Cmcm (63) R2 "11; "22; "33

M3

GO2

GA2

H3

XO32

XA32

8 P42=nmc (137) R3 "11 � "22; "33

M1 � M2

GO3

H1 � H2

XO13 � XO23

XA13 � XA23

9 Pnma (62) R1 � R3 "11 � "33; "22; "31

M2

GO1 � GO3

GA1 � GA3

H2

XO21 � XO23

XA21 � XA23



there is evidence that the whole branch between the R- and M-

points softens (Denoyer et al., 1971); that is, modes [( 1
2

1
2 �),�2]

with 0 � � � 1
2 all have abnormally low frequencies. Experi-

mentally it is usually found that the square of the frequency

of a softening mode decreases more or less linearly with

temperature, hence we set

ar � a0r�T ÿ Tr�; am � a0m�T ÿ Tm�:
Non-zero values of octahedral tilts arise as a result of a mode

condensing at the R- and M-points of the Brillouin zone.

These are primary order parameters.

There is no evidence that the other modes found in the

hettotypes considered here become soft, hence ag, ah and ax
are taken to be positive at all temperatures. Non-zero values

of the secondary order parameters G, H and X may occur

through terms that couple them to the primary order param-

eters. For example, setting the ®rst derivative of F with respect

to Gi equal to zero gives

@F=@Gi � 0 � agGi � bgGi�G2
j �G2

k� � cgG
3
i � fgrGiR

2
i

� ggrGi�R2
j � R2

k�:
Therefore, either

Gi � 0

or

cgG
2
i � ÿag ÿ bg�G2

j �G2
k� ÿ fgrR

2
i ÿ ggr�R2

j � R2
k�: �3�

cg must be positive to produce a minimum in F for ®nite Gi .

Examination of the list of allowed condensed modes in

Table 3 for the ®rst three hettotypes shows that modes

represented by G1 and G3 can only occur in hettotype 2. The

Landau expansion and its application to form relationship (3)

would suggest that non-zero values of Gi might be found in

hettotypes 1 and 3 if present in hettotype 2, since the coef®-

cients ag, bg, cg, fgr and ggr are likely to have a weak

temperature dependence. That is, if Gi are present in hetto-

type 2, then the following might be expected,

Hettotype 1 R3;GO3;GA3;

Hettotype 2 R1 � R3;GO1 � GO3;GA1 � GA3

Hettotype 3 R1 � R2 � R3;GO1 � GO2 � GO3;

GA1 � GA2 � GA3:

This sequence with change in temperature can be reproduced

with suitable choice of the magnitudes of the coef®cients in

the expansion. A different choice can be made for which all Gi

are zero in the three hettotypes.
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Table 4
Weights of condensed modes in units of u AÊ 2.

Hettotype Material W(Ri) W(Mi) W(XAij) W(XOij) W(GAi) W(GOi) W(Hi) Ref.² Entry

1 R3 SrTiO3, 77 K 0.0726 1 1
SrZrO3, 1223 K 1.6971 2 2

2 R1 = R3 BaCeO3, 573 K 6.7294 0.0586 0.1460 3 3
3 R1 = R2 = R3 BaCeO3, 773 K 5.2701 3 4

LaGeO3, 673 K 4.3662 4 5
4 M3 NaNbO3, 888 K 0.9520 5 6

NaTaO3, 878 K 0.8965 5 7
5 M1 = M2 No available data
6 M1 = M2 = M3 CaCu3Ti4O12 10.2753 0.2031 6 8

Tb0.67Cu3Ti4O12 9.9740 0.1964 6 9
CaCu3Mn4O12 9.2271 0.1323 7 10
Li0.36WO3 5.0358 0.0060 8 11
Na0.73WO3 0.3953 0.0000 8 12
Na0.54WO3 0.3657 0.0000 8 13

7 R2, M3 NaNbO3, 813 K 0.8442 1.2912 0.0082 0.0012 0.0001 0.0002 0.0042 5 14
NaTaO3, 803 K 0.9408 1.1623 0.0808 0.0048 0.0000 0.0067 0.0013 5 15
SrZrO3, 973 K 3.1806 0.8497 0.4539 0.0063 0.0154 0.0118 0.0002 2 16

8 M1 = M2, R3 CaFeTi2O6 4.3399 7.3194 0.3690 0.1987 0.0508 0.0015 9 17
9 R1 = R3, M2 BaCeO3, 473 K 7.2126 0.5108 0.8058 0.0503 0.0775 0.1518 0.0002 3 18

SrZrO3 5.8137 1.2545 1.7364 0.0958 0.0471 0.1209 0.0001 2 19
LaGeO3 5.0130 0.4181 1.1826 0.0162 0.0713 0.1034 0.0002 4 20
PrFeO3 7.4537 1.7425 8.3611 0.2237 0.3453 0.1390 0.0000 10 21
NdFeO3 8.3981 1.9033 10.7150 0.2898 0.4901 0.1649 0.0000 10 22
SmFeO3 9.6041 2.3606 15.1215 0.4215 0.7547 0.1970 0.0005 10 23
EuFeO3 10.0301 2.5231 17.2613 0.5149 0.9157 0.2237 0.0000 10 24
GdFeO3 10.2814 2.6910 19.5499 0.5419 1.0893 0.2683 0.0000 10 25
TbFeO3 11.1054 2.7621 20.4797 0.6507 1.1498 0.2368 0.0000 8 26
DyFeO3 11.5369 2.9724 22.5061 0.7089 1.3311 0.2471 0.0002 8 27
HoFeO3 12.0370 3.0026 23.8465 0.7804 1.4574 0.2704 0.0002 10 28
ErFeO3 12.8142 3.1006 24.9061 0.8218 1.5771 0.3205 0.0000 10 29
TmFeO3 13.1795 3.0947 25.1013 0.9675 1.6745 0.2982 0.0000 10 30
YbFeO3 13.6153 3.2967 26.7549 1.0592 1.7761 0.3007 0.0000 10 31
LuFeO3 14.3837 3.2072 27.5146 1.0463 1.8962 0.2892 0.0000 10 32

² References: (1) Unoki & Sakudo (1967); (2) Kennedy et al. (1999); (3) Knight (1995); (4) Howard & Kennedy (1999); (5) Darlington & Knight (1999); (6) Bochu et al. (1979); (7)
Chenevas et al. (1975); (8) Wiseman & Dickens (1976); (9) Leinenweber & Parise (1995); (10) Marezio et al. (1970).
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The space groups allocated to hettotypes 1 and 3 do not

allow ®nite Gi ; both I4/mcm and R�3c possess a single posi-

tional parameter to describe the atomic displacements

(excluding the macrostrains), and therefore only a single

irreducible representation is involved. Therefore, it appears

that either the space groups allocated to hettotypes 1 and 3 are

incorrect or, if the same Landau expansion can be used to

describe transitions between hettotypes 1, 2 and 3 and the

magnitudes of the coef®cients do not change abruptly at a

transition, then Gi are zero in hettotype 2.

A search amongst the centrosymmetric tetragonal space

groups (numbers 123±142) for one that allows only

[R3 GA3 GO3] to be present proved unsuccessful. P42=mmc
(131) allows three modes, [GA3 GO3] and a mode involving

oxygen displacements not considered before, {[( 1
2

1
2 0), M4],

OIII(x) = OII(y)}, which is an octahedral breathing mode.

Tetragonal space groups exist that allow modes [R3 GA3 GO3]

to be simultaneously present but also allow other modes to

have ®nite values.

The second suggestion, i.e. that modes Gi are absent in

hettotype 2, can be tested directly. BaCeO3 shows the

sequence 9:[aÿb+aÿ] ! 2:[aÿb0aÿ] ! 3:[aÿaÿaÿ] !
A:[a0a0a0] with increasing temperature (Knight, 1995). This is

discussed in the following section.

Similar arguments can be applied concerning modes Hi.

This mode cannot appear in 4:[a0a0c+], and hence might be

expected to be zero in 5:[a+a+c0] and 6:[a+a+a+]. NaxWO3

exhibits the sequence 6:[a+a+a+] ! 5:[a+a+c0] ! 4:[a0a0c+] !
A:[a0a0a0] with increasing temperature (Clarke, 1977).

Unfortunately, no structural determinations of hettotype 5

have been reported in the literature. Structural re®nements of

hettotype 6 are discussed in the following section.

A search for a centrosymmetric tetragonal space group

allowing a single plus tilt and Hi modes to be present together

was also unsuccessful. Space group P42=mbc (135) allows the

octahedral tilt M3 to be present with one other mode involving

oxygen displacements. The second mode is {[( 1
2

1
2

1
2 ), ÿ 0

12�,
OIII(x) = ÿOII(y)} best described as a staggered shear of the

octahedra.

These arguments cannot be applied to the modes described

by Xij . Non-zero values of Xij are only found when both plus

and minus tilts are present. The space groups of hettotypes

7:[a0bÿc+], 8:[a+a+cÿ] and 9:[aÿb+aÿ] allow all expected values

of Xij to be present from the coupling term Xij
2Rj

2Mi
2 in the

expression for F.

6. Discussion of the weights of condensed modes

The weights of condensed modes in each hettotype (apart

from hettotype 5 for which there appears to be no structure

re®nement) are listed in Table 4. If no temperature is given in

the second column, then room temperature is implied. The

most commonly found hettotype is number 9. The reasons for

this are discussed by Thomas & Beitollahi (1994) and by

Woodward (1997b).

BaCeO3 transforms from 9:�aÿb�aÿ� ! 2:[aÿb0aÿ] !
3:[aÿaÿaÿ] ! A:[a0a0a0] with increasing temperature (Knight,

1995). The sequence provides a test of the proposition that, if

the space group for hettotype 3 is correct and the Landau

expansion can be applied to the sequence of transitions, Gi are

zero in hettotype 2 (and possibly zero in hettotype 9 too). The

fractional coordinates of the A cation in phases 9 and 2 that

produce ®nite GAi are 0.0038 (4) and 0.0033 (4), respectively,

and so appear to be real. The ®nite value of GOi in hettotype 2

concerns the difference in magnitude of two unrelated

displacements. At 573 K, the displacements are reported as

0.3193 and 0.4296 AÊ . If these were exactly the same then GOi

would be identically zero. The difference is outside the quoted

uncertainties in fractional coordinates of the two oxygen

atoms (Knight, 1995).

The rare-earth orthoferrites, [lanthanide]FeO3 (Marezio et

al., 1970), indicate that both GAi and GOi are ®nite in hettotype

9. The weights of the condensed modes in this series increase

with decrease in the radii of the A cation from 1.14 AÊ (Pr3+,

eight-coordinated) to 0.97 AÊ (Lu3+, eight-coordinated)

(Shannon & Prewitt, 1969, 1970) in a near-linear fashion.

The conclusion must be that non-zero values of Gi are ®nite

in phases 2 and 9. Requiring Gi to be equal to zero in hetto-

types 1 and 3 places restrictions on the relative magnitudes of

some of the coef®cients in the Landau expansion.

The situation is different concerning the coef®cients invol-

ving Hi . These modes have very nearly zero weight in all

reported structures analysed (including many in hettotype 9

not listed in Table 4) except for entries 8, 9 and 10 in Table 4.

Note that these three materials possess two types of A

cations.

Experimental results indicate that the symmetry possessed

by some subsets of atoms allowed to be displaced by modes G

and X are higher than required by the space group of the

hettotype. CsPbCl3 undergoes the sequence of transitions

4:[a0a0c+] ! 7:[a0bÿc+] ! 9:[aÿb+aÿ] as the temperature

decreases (Fujii et al., 1974), while CsPbBr3 follows the

sequence 4:[a0a0c+] ! 9:[aÿb+aÿ] (Hirotsu et al., 1974). It was

pointed out by both groups of workers that if a plus and a

minus tilt are present in the structure then an X-point

becomes a reciprocal-lattice point. Hirotsu et al. (1974) argued

that the allowed displacements of the A cation should be

described in terms of modes associated with the Z-point of the

tetragonal Brillouin zone of phase 4:[a0a0c+]. However,

following Cochran & Zia (1968), Darlington (1976) suggested

that the displacements should be described in terms of

transverse normal modes of the cubic phase. Using Cowley's

table it is easy to deduce that the relevant modes at the

X-point present in 7:[a0bÿc+] are described by [(00 1
2 ), M5

0],
with potential displacements of both A and OII in the

pseudocubic y direction. These have been labelled as XA32 and

XO32. The pseudocubic y component of the displacement of

OII is required by the space-group symmetry to follow the

pattern of displacements described by [(00 1
2 ), M5

0], while that

of the A cation is not. There are two crystallographically

distinguishable A cations in sites with the same point

symmetry:



�0; 0; 0; 1
2 ;

1
2 ; 0� �

A1 4cmm �0; y1;
1
4 �

A2 4cmm �0; 1
2 � y2;

1
4 �:

The allowed displacements of these cations require modes

XA32 and GA2. Recent structural re®nements of NaNbO3 and

NaTaO3 (Darlington & Knight, 1999) indicate that within

experimental error the A cations do follow the sequence of

displacements described by [(0 0 1
2 ), M5

0], that is, y1 = y2 and

GA2 has zero weight. Constraining them to be equal does not

change the quality of the ®t; the value of �2 is essentially the

same (Knight, 1999). The structures were re®ned from time-

of-¯ight neutron powder diffraction patterns using the Riet-

veld procedure, so the constraint hardly changes the number

of degrees of freedom in the re®nement since the number of

observations is so large. The same occurs in SrZrO3 (Kennedy

et al., 1999), that is, in hettotype 7, between 970 and 1100 K,

within experimental error, y1 = y2 and therefore GA2 has zero

weight. Therefore some subsets of displacements appear to

have a higher symmetry than required by the space group.

Similar effects occur in other structures. For example, the

structural distortions in Sr3Ru2O7 (Shaked et al., 2000) appear

to have a higher symmetry than required by the orthorhombic

space group. Within the bi-layer of corner-linked octahedra,

the tilts follow a minus pattern and have tetragonal symmetry,

as the lattice parameters indicate. However, the topology of

the structure does not allow overall fourfold symmetry and the

space group must be orthorhombic.

Cox & Sleight (1979) used space group R�3 to re®ne the

structure of one of the phases of Ba2BiIIIBiVO6 in which the

valencies of the Bismuth cations are ordered. The loss of the

c glide produces two distinguishable B cations (both of which

are undisplaced) and hence two distinguishable octahedra; it

also allows displacement of the A cations. The weights of the

four modes (in units of u AÊ 2) in the structure at 419 K are as

follows:

A cation

W � 1
2

1
2

1
2 �;ÿ15

� �
x
� W � 1

2
1
2

1
2 �;ÿ15

� �
y
� W � 1

2
1
2

1
2 �;ÿ15

� �
z

� 0:0176; GA1 � GA2 � GA3

OI=OII=OIII

W � 1
2

1
2

1
2 �;ÿ25

� �
x
� W � 1

2
1
2

1
2 �;ÿ25

� �
y
� W � 1

2
1
2

1
2 �;ÿ25

� �
z

� 1:2954; R1 � R2 � R3

W � 1
2

1
2

1
2 �;ÿ15

� �
x
� W � 1

2
1
2

1
2 �;ÿ15

� �
y
� W � 1

2
1
2

1
2 �;ÿ15

� �
z

� 0:0062; GO1 � GO2 � GO3

W � 1
2

1
2

1
2 �;ÿ0

2

� � � 0:4326; OIz � OIIy � OIIIx:

The last mode has not been considered before; it is a singlet

at the R-point and describes a staggered `breathing-mode'

distortion of the octahedron, and has signi®cant weight. Half

the octahedra have increased volume while half have their

volume decreased because of its presence. Modes described by

GAi and GOi , allowed to occur in the structure, have extremely

small weights; it seems likely that both are zero in this phase.
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Erratum

C. N. W. Darlington
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England. Correspondence e-mail: c.n.w.darlington@bham.ac.uk

There is an error in the mode assignment for hettotype 9,

[aÿb+aÿ], discussed in the paper by Darlington [Acta Cryst.

(2002). A58, 66±71], which has been pointed out by Dr Kevin

Knight, Rutherford Appleton Laboratory, Didcot, Oxon,

England. In this paper, a mode involving displacements of

the anions of hettotype 9 was labelled [(1
2, 0, 1

2), M1] rather than

[(1
2, 0, 1

2), M2]. Both modes involve plus-like distortion of the

octahedra. In the corrected Tables 1±4 shown below, this

mode, which is only found in hettotype 9, has been labelled K2

rather than H2. Therefore, there are not seven but eight

normal modes of the cubic phase required to describe the

displacements found in the nine hettotypes considered. The

weights of K2 in all the materials examined in the original

paper with the structure of hettotype 9 [labelled W(H1) in the

original Table 4] are correct, unaltered by the change in the

labelling of the mode. It should be noted that [(1
2, 0, 1

2), M2] is a

longitudinal mode ± the seven other modes are all transverse.

The weights of K2 are not signi®cantly different from zero in

the 15 structures examined.
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Table 1
The nine hettotypes.

Number
�=ÿ
notation [Mi Rj] Multiplicity True unit cell Space group

1 a0a0cÿ R3 2 � 2 � 2 21/2 � 21/2 � 2 I4=mcm (140)
2 aÿb0aÿ R1 = R3 2 � 2 � 2 21/2 � 2 � 21/2 Imma (74)
3 aÿaÿaÿ R1 = R2 = R3 2 � 2 � 2 21/2 � 21/2 � 21/2 R�3c (167)
4 a0a0c+ M3 2 � 2 � 1 21/2 � 21/2 � 1 P4=mbm (127)
5 a+a+c0 M1 = M2 2 � 2 � 2 2 � 2 � 2 I4=mmm (139)
6 a+a+a+ M1 = M2 = M3 2 � 2 � 2 2 � 2 � 2 Im�3 (204)
7 a0bÿc+ R2, M3 2 � 2 � 2 2 � 2 � 2 Cmcm (63)
8 a+a+cÿ M1 = M2, R3 2 � 2 � 2 2 � 2 � 2 P42=nmc (137)
9 aÿb+aÿ R1 = R3, M2 2 � 2 � 2 21/2 � 2 � 21/2 Pnma (62)

Table 2
Atomic displacements in the seven normal modes, the symbol used in the
construction of the Landau potential, and character of each mode.

Normal mode Displacement Symbol Character

( 1
2,

1
2,

1
2 ), ÿ25 OI(y) = ÿOII(z) R1 Octahedral minus tilt

( 1
2,

1
2,

1
2 ), ÿ25 OI(x) = ÿOIII(z) R2 Octahedral minus tilt

( 1
2,

1
2,

1
2 ), ÿ25 OII(x) = ÿOIII(y) R3 Octahedral minus tilt

( 1
2,

1
2,

1
2 ), ÿ15 OI(y) = OII(z) GO1 Octahedral minus distortion

( 1
2,

1
2,

1
2 ), ÿ15 OI(x) = OIII(z) GO2 Octahedral minus distortion

( 1
2,

1
2,

1
2 ), ÿ15 OII(x) = OIII(y) GO3 Octahedral minus distortion

( 1
2,

1
2,

1
2 ), ÿ15 A(x) GA1 A cation displacement

( 1
2,

1
2,

1
2 ), ÿ15 A(y) GA2 A cation displacement

( 1
2,

1
2,

1
2 ), ÿ15 A(z) GA3 A cation displacement

(0, 1
2,

1
2 ), M3 OI(y) = ÿOII(z) M1 Octahedral plus tilt

( 1
2, 0, 1

2 ), M3 OI(x) = ÿOIII(z) M2 Octahedral plus tilt

( 1
2,

1
2, 0), M3 OII(x) = ÿOIII(y) M3 Octahedral plus tilt

(0, 1
2,

1
2 ), M1 OI(y) = OII(z) H1 Octahedral plus distortion

( 1
2, 0, 1

2 ), M1 OI(x) = OIII(z) H2 Octahedral plus distortion

( 1
2,

1
2, 0), M1 OII(x) = OIII(y) H3 Octahedral plus distortion

(0, 1
2,

1
2 ), M2 OII(y) = ÿOI(z) K1 Octahedral plus distortion

( 1
2, 0, 1

2 ), M2 OI(z) = ÿOIII(x) K2 Octahedral plus distortion

( 1
2,

1
2, 0), M2 OIII(x) = ÿOII(y) K3 Octahedral plus distortion

( 1
2, 0, 0), M5

0 OIII(y) XO12 Octahedral distortion

( 1
2, 0, 0), M5

0 OIII(z) XO13 Octahedral distortion

(0, 1
2, 0), M5

0 OII(z) XO23 Octahedral distortion

(0, 1
2, 0), M5

0 OII(x) XO21 Octahedral distortion

(0, 0, 1
2 ), M5

0 OI(x) XO31 Octahedral distortion

(0, 0, 1
2 ), M5

0 OI(y) XO32 Octahedral distortion

( 1
2, 0, 0), M5

0 A(y) XA12 Cation displacement

( 1
2, 0, 0), M5

0 A(z) XA13 Cation displacement

(0, 1
2, 0), M5

0 A(z) XA23 Cation displacement

(0, 1
2, 0), M5

0 A(x) XA21 Cation displacement

(0, 0, 1
2 ), M5

0 A(x) XA31 Cation displacement

(0, 0, 1
2 ), M5

0 A(y) XA32 Cation displacement
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Table 3
The space group, possible condensed modes and non-zero pseudocubic spon-
taneous macrostrain in the nine hettotypes.

Number Space group Allowed modes Macrostrain

1 I4=mcm (140) R3 "11 � "22; "33

2 Imma (74) R1 � R3 "11 � "33; "22; "31

GO1 � GO3

GA1 � GA3

3 R�3c (167) R1 � R2 � R3 "11 � "22 � "33; "23 � "31 � "12

4 P4=mbm (127) M3 "11 � "22; "33

5 I4=mmm (139) M1 � M2 "11 � "22; "33

H1 � H2 6� H3

6 Im�3 (204) M1 � M2 � M3 "11 � "22 � "33

H1 � H2 � H3

7 Cmcm (63) R2 "11; "22; "33

M3

GO2

GA2

H3

XO32

XA32

8 P42=nmc (137) R3 "11 � "22; "33

M1 � M2

GO3

H1 � H2

XO13 � XO23

XA13 � XA23

9 Pnma (62) R1 � R3 "11 � "33; "22; "31

M2

GO1 � GO3

GA1 � GA3

K2

XO21 � XO23

XA21 � XA23

Table 4
Weights of condensed modes in units of u AÊ 2.

Hettotype Material W(Ri) W(Mi) W(XAij) W(XOij) W(GAi) W(GOi) W(Hi) W(Ki) Ref.² Entry

1 R3 SrTiO3, 77 K 0.0726 1 1
SrZrO3, 1223 K 1.6971 2 2

2 R1 = R3 BaCeO3, 573 K 6.7294 0.0586 0.1460 3 3
3 R1 = R2 = R3 BaCeO3, 773 K 5.2701 3 4

LaGeO3, 673 K 4.3662 4 5
4 M3 NaNbO3, 888 K 0.9520 5 6

NaTaO3, 878 K 0.8965 5 7
5 M1 = M2 No available data
6 M1 = M2 = M3 CaCu3Ti4O12 10.2753 0.2031 6 8

Tb0.67Cu3Ti4O12 9.9740 0.1964 6 9
CaCu3Mn4O12 9.2271 0.1323 7 10
Li0.36WO3 5.0358 0.0060 8 11
Na0.73WO3 0.3953 0.0000 8 12
Na0.54WO3 0.3657 0.0000 8 13

7 R2, M3 NaNbO3, 813 K 0.8442 1.2912 0.0082 0.0012 0.0001 0.0002 0.0042 5 14
NaTaO3, 803 K 0.9408 1.1623 0.0808 0.0048 0.0000 0.0067 0.0013 5 15
SrZrO3, 973 K 3.1806 0.8497 0.4539 0.0063 0.0154 0.0118 0.0002 2 16

8 M1 = M2, R3 CaFeTi2O6 4.3399 7.3194 0.3690 0.1987 0.0508 0.0015 9 17
9 R1 = R3, M2 BaCeO3, 473 K 7.2126 0.5108 0.8058 0.0503 0.0775 0.1518 0.0002 3 18

SrZrO3 5.8137 1.2545 1.7364 0.0958 0.0471 0.1209 0.0001 2 19
LaGeO3 5.0130 0.4181 1.1826 0.0162 0.0713 0.1034 0.0002 4 20
PrFeO3 7.4537 1.7425 8.3611 0.2237 0.3453 0.1390 0.0000 10 21
NdFeO3 8.3981 1.9033 10.7150 0.2898 0.4901 0.1649 0.0000 10 22
SmFeO3 9.6041 2.3606 15.1215 0.4215 0.7547 0.1970 0.0005 10 23
EuFeO3 10.0301 2.5231 17.2613 0.5149 0.9157 0.2237 0.0000 10 24
GdFeO3 10.2814 2.6910 19.5499 0.5419 1.0893 0.2683 0.0000 10 25
TbFeO3 11.1054 2.7621 20.4797 0.6507 1.1498 0.2368 0.0000 8 26
DyFeO3 11.5369 2.9724 22.5061 0.7089 1.3311 0.2471 0.0002 8 27
HoFeO3 12.0370 3.0026 23.8465 0.7804 1.4574 0.2704 0.0002 10 28
ErFeO3 12.8142 3.1006 24.9061 0.8218 1.5771 0.3205 0.0000 10 29
TmFeO3 13.1795 3.0947 25.1013 0.9675 1.6745 0.2982 0.0000 10 30
YbFeO3 13.6153 3.2967 26.7549 1.0592 1.7761 0.3007 0.0000 10 31
LuFeO3 14.3837 3.2072 27.5146 1.0463 1.8962 0.2892 0.0000 10 32

² References: (1) Unoki & Sakudo (1967); (2) Kennedy et al. (1999); (3) Knight (1995); (4) Howard & Kennedy (1999); (5) Darlington & Knight (1999); (6) Bochu et al. (1979); (7)
Chenevas et al. (1975); (8) Wiseman & Dickens (1976); (9) Leinenweber & Parise (1995); (10) Marezio et al. (1970).


